COURSE INFORMATON								
Course Title Code Semester L+P+L Hour Credits ECTS								
MECHANICS OF REINFORCED CONCRETE	CE 520	-	3+0+0	3	10			

Prerequisites

Language of Instruction	English
Course Level	Master's Degree (Second Cycle Programmes)
Course Type	Departmental Elective
Course Coordinator	-
Instructors	Assist. Prof. Dr. Almıla Uzel
Assistants	-
Goals	Analysis, design and behaviour modelling of reinforced concrete structures are introduced. Analysis and design of reinforced concrete members beyond sectional models are discussed.
Content	Mechanical properties of concrete and reinforcement; constitutive relations; linear-elastic models; nonlinear-elastic models; elastic-plastic models; and limit analysis theorems; compression field model is discussed along with its implementation and application in nonlinear finite element analyses and strut-and-tie modeling.

Course Learning Outcomes	Program Learning Outcomes	Teaching Methods	Assessment Methods
1) Knowledge on characteristics of reinforced concrete materials.	1,2,5	1,2	А, В
2) Knowledge on the structural behavior of reinforced concrete under flexural, axial and shear effects.	1,2,5	1,2	A, B
3) Knowledge on the nonlinear characteristics of reinforced concrete members.	1,2,5	1,2	A, B
4) Theoretical modeling of reinforced concrete behavior under various actions.	1,2,5,7	1,2,3	A, B, C
5) Use of computer programs for analysis of reinforced concrete behavior.	1,2,5,7	1,2,3	A, B, C

Teaching Methods:	1: Lecture, 2: Question-Answer, 3: Project
Assessment Methods:	A: Written Exam, B:Homework, C: Project Evaluation

	COURSE CONTENT					
Week	Study Materials					
1	Introduction, why non-linear analysis, material properties of concrete and steel.	Lecture Notes and Textbook				
2	Linear Elastic Models/ Non-linear Elasticity Models	Lecture Notes and Textbook				
3	Constitutive Models and Failure Criteria	Lecture Notes and Textbook				
4	Limit Analysis using Plasticity- Lower Bound and Upper Bound Theories	Lecture Notes and Textbook				
5	Behavior of Members Subjected to Shear, History of research on concrete under shear.	Lecture Notes and Textbook				
6	Compression Field Theory and Modified Compression Field Theory (MCFT).	Lecture Notes and Textbook				
7	Mechanisms affecting shear behavior of members and implementation of these mechanisms into MCFT.	Lecture Notes and Textbook				
8	Determination of member shear capacity using MCFT procedures.	Lecture Notes and Textbook				
9	Midterm Exam	Lecture Notes and Textbook				
10	Design using MCFT, code implementation of MCFT, Simplified Modified Compression Field Theory (SMCFT), shear provisions of Canadian Code (CSA A23.3-14) and AASHTO codes.	Lecture Notes and Textbook				
11	Design of Disturbed Regions, B- and D- regions, Strut and Tie models, strength of struts, ties and nodal zones, deep beams, corbels	Lecture Notes and Textbook				
12	Code approaches to strut-and-tie modeling of Reinforced Concrete and Prestressed Concrete Members	Lecture Notes and Textbook				
13	Nonlinear finite element methods for the analysis and design of disturbed regions	Lecture Notes and Textbook				
14	Nonlinear finite element analysis of shear critical members.	Lecture Notes and Textbook				
15	Work on term project	Lecture Notes and Textbook				

RECOMMENDED SOURCES					
Lecture Notes	Lecture Notes Notes prepared by the instructor, published research papers				
Textbook	Reinforced Concrete Mechanics and Design: Authors: J.K. Wight, J.G. MacGregor, Prentice Hall, 2008.				
Non-linear Mechanics of Reinforced Concrete: Authors: K. Maekawa, H. Okamura, A. Pimanmas, CRC Press, 2003.					

MATERIAL SHARING		
Documents	Lecture notes delivered to the students	
Assignments	Homeworks are returned to students after they are graded	
Exams	Exams questions are solved if demanded	

ASSESSMENT					
IN-TERM STUDIES	PERCENTAGE				
Mid-terms	1	50			
Quizzes	-	-			
Assignment	6	20			
Term Project	1	30			
Total		100			
CONTRIBUTION OF FINAL EXAMINATION TO OVERALL GRADE		40			
CONTRIBUTION OF IN-TERM STUDIES TO OVERALL GRADE		60			
Total		100			

COURSE CATEGORY

Expertise/Field Courses

	COURSE'S CONTRIBUTION TO PROGRAM							
No Program Learning Outcomes		Contribution						
			2	3	4	5		
1	Attains knowledge through wide and in-depth investigations his/her field and surveys, evaluates, interprets, and applies the knowledge thus acquired.			_	X			
2	Has a critical and comprehensive knowledge of contemporary engineering techniques and methods of application.				x			
3	By using unfamiliar, ambiguous, or incompletely defined data, completes and utilizes the required knowledge by scientific methods; is able to fuse and make use of knowledge from different disciplines.	-						
4	Has the awareness of new and emerging technologies in his/her branch of engineering profession, studies and learns these when needed.							
5	Defines and formulates problems in his/her branch of engineering, develops methods of solution, and applies innovative methods of solution.				x			
6	Devises new and/or original ideas and methods; designs complex systems and processes and proposes innovative/alternative solutions for their design.	-		-	-			
7	Has the ability to design and conduct theoretical, experimental, and model- based investigations; is able to use judgment to solve complex problems				x			

	that may be faced in this process.		
8	Functions effectively as a member or as a leader in teams that may be interdisciplinary, devises approaches of solving complex situations, can work independently and can assume responsibility.		
9	Has the oral and written communication skills in one foreign language at the B2 general level of European Language Portfolio.		
10	Can present the progress and the results of his investigations clearly and systematically in national or international contexts both orally and in writing.		
11	Knows social, environmental, health, safety, and legal dimensions of engineering applications as well as project management and business practices; and is aware of the limitations and the responsibilities these impose on engineering practices.		
12	Commits to social, scientific, and professional ethics during data acquisition, interpretation, and publication as well as in all professional activities		

ECTS ALLOCATED BASED ON STUDENT WORKLOAD BY THE COURSE DESCRIPTION						
Activities	Quantity	Duration (Hour)	Total Workload (Hour)			
Course Duration (Excluding the exam weeks: 14x Total course hours)	14	3	42			
Hours for off-the-classroom study (Pre-study, practice)	14	2	28			
Midterm examination	1	3	10			
Homework	6	15	90			
Project	1	50	50			
Final examination	1	2	20			
Total Work Load			240			
Total Work Load / 25 (h)			10			
ECTS Credit of the Course			10			